Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Clin Ter ; 174(6): 509-517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38048114

RESUMEN

Introduction: utism spectrum disorder (ASD) is a heterogeneous clinical condition, and its genetic basis is widely confirmed. The chromosomal microarray analysis (CMA) is a first-line diagnostic test that identifies copy number variants (CNVs). Some of these genomic rearrangements are associated with ASD, but the meaning of most of them is still unknown. Materials and methods: We performed a comparative genome hybridization (array-CGH) analysis in 130 children with confirmed ASD. Genetic results were analyzed and compared to clinical phenotype. Results and discussion.: 61/130 children carry CNVs, 44 presenting variants of unknown significance (u-CNVs), and 17 with susceptibility-CNVs (c-CNVs). Clinical evaluation showed no differences in cognitive abilities, language and EEG abnormalities, ASD symptoms among CNVs group and other patients. Finally, we highlight the role of GPHN, IMMP2L and ZMYND11, as ASD susceptibility genes. Conclusions: Our findings underscore the importance of array-CGH in ASD children since new CNVs and emerging genes appear to be associated with different clinical pictures.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Niño , Trastorno del Espectro Autista/genética , Hibridación Genómica Comparativa , Cognición , Lenguaje , Proteínas de Unión al ADN , Proteínas de Ciclo Celular , Proteínas Co-Represoras
2.
Genes (Basel) ; 14(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136976

RESUMEN

Mitochondrial disorders are characterized by a huge clinical, biochemical, and genetic heterogeneity, which poses significant diagnostic challenges. Several studies report that more than 50% of patients with suspected mitochondrial disease could have a non-mitochondrial disorder. Thus, only the identification of the causative pathogenic variant can confirm the diagnosis. Herein, we describe the diagnostic journey of a family suspected of having a mitochondrial disorder who were referred to our Genetics Department. The proband presented with the association of cerebellar ataxia, COX-negative fibers on muscle histology, and mtDNA deletions. Whole exome sequencing (WES), supplemented by a high-resolution array, comparative genomic hybridization (array-CGH), allowed us to identify two pathogenic variants in the non-mitochondrial SYNE1 gene. The proband and her affected sister were found to be compound heterozygous for a known nonsense variant (c.13258C>T, p.(Arg4420Ter)), and a large intragenic deletion that was predicted to result in a loss of function. To our knowledge, this is the first report of a large intragenic deletion of SYNE1 in patients with cerebellar ataxia (ARCA1). This report highlights the interest in a pangenomic approach to identify the genetic basis in heterogeneous neuromuscular patients with the possible cause of mitochondrial disease. Moreover, even rare copy number variations should be considered in patients with a phenotype suggestive of SYNE1 deficiency.


Asunto(s)
Ataxia Cerebelosa , Enfermedades Mitocondriales , Humanos , Femenino , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Proteínas del Citoesqueleto/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Proteínas del Tejido Nervioso/genética
3.
Am J Med Genet A ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974505

RESUMEN

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.

4.
Genes (Basel) ; 14(9)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37761840

RESUMEN

Complex chromosomal rearrangements are rare events compatible with survival, consisting of an imbalance and/or position effect of one or more genes, that contribute to a range of clinical presentations. The investigation and diagnosis of these cases are often difficult. The interpretation of the pattern of pairing and segregation of these chromosomes during meiosis is important for the assessment of the risk and the type of imbalance in the offspring. Here, we investigated two unrelated pediatric carriers of complex rearrangements of chromosome 7. The first case was a 2-year-old girl with a severe phenotype. Conventional cytogenetics evidenced a duplication of part of the short arm of chromosome 7. By array-CGH analysis, we found a complex rearrangement with three discontinuous trisomy regions (7p22.1p21.3, 7p21.3, and 7p21.3p15.3). The second case was a newborn investigated for hypodevelopment and dimorphisms. The karyotype analysis promptly revealed a structurally altered chromosome 7. The array-CGH analysis identified an even more complex rearrangement consisting of a trisomic region at 7q11.23q22 and a tetrasomic region of 4.5 Mb spanning 7q21.3 to q22.1. The mother's karyotype examination revealed a complex rearrangement of chromosome 7: the 7q11.23q22 region was inserted in the short arm at 7p15.3. Finally, array-CGH analysis showed a trisomic region that corresponds to the tetrasomic region of the son. Our work proved that the integration of several technical solutions is often required to appropriately analyze complex chromosomal rearrangements in order to understand their implications and offer appropriate genetic counseling.

5.
Orv Hetil ; 164(28): 1111-1120, 2023 Jul 16.
Artículo en Húngaro | MEDLINE | ID: mdl-37454329

RESUMEN

INTRODUCTION: Aortic arch anomalies are frequently associated with cardiac or extracardiac malformations, chromosomal aberrations and postpartum esophagus/trachea compression. OBJECTIVE: We aimed to establish the prevalence of associated cardiac and extracardiac malformations, the frequency of chromosomal aberrations in fetuses with the diagnosis of aortic arch anomalies and to assess the pregnancy and the postnatal outcome. METHOD: Retrospective cohort study of all fetuses with aortic arch anomalies and genetic diagnosis in a tertiary referral obstetric and fetal cardiology centre between 2016 and 2020. Postpartum data were collected within 24 months after birth. RESULTS: In a cohort of 11.380 pregnant women, the prevalence of aortic arch anomalies was 0.25%. Among 28 cases of right aortic arch anomalies, in 27 fetuses prenatal genetic diagnosis was available. We diagnosed 4 fetuses with mirror-image branching (right sided V-sign) and 23 fetuses with U-sign (4 fetuses with complete double aortic arch). 18 cases (66%) were isolated. Associated anomalies were cardiac in 3 cases and extracardiac in 7 cases (33%). The most frequent cardiac anomaly was tetralogy of Fallot (2/27), the extracardiac anomalies were thymus hypoplasia, single umbilical artery and subclavian artery malformations. In 1 case (3.7%), fluorescent in situ hybridization diagnosed 22q11.2 microdeletion. 75% of fetuses with right sided V-sign were associated with conotruncal malformations. Pregnancy and postpartum outcome were known in 24 pregnancies. Postnatal diagnosis was different from prenatal in 2 cases, the concordance rate was 93%. Isolated cases resulted in live birth in 17/18 pregnancies (93%). The frequency of postpartum trachea/esophagus compression was 42,9% (9 cases) due to vascular ring, in 6 children (28,6%) operation was necessary. CONCLUSION: Fetal aortic arch anomalies are multidisciplinary diseases to be diagnosed by proper prenatal ultrasound examination. Associated fetal anomalies necessitate extended obstetric and cardiac sonography, invasive prenatal testing should be offered, and thorough postnatal long-term follow-up is recommended. Orv Hetil. 2023; 164(28): 1111-1120.


Asunto(s)
Aorta Torácica , Cardiopatías Congénitas , Niño , Embarazo , Femenino , Humanos , Aorta Torácica/diagnóstico por imagen , Estudios Retrospectivos , Ultrasonografía Prenatal/métodos , Hibridación Fluorescente in Situ , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Aberraciones Cromosómicas
6.
Genes (Basel) ; 14(7)2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37510238

RESUMEN

17p13 is a chromosomal region characterized by genomic instability due to high gene density leading to multiple deletion and duplication events. 17p13.3 microduplication syndrome is a rare condition, reported only in 40 cases worldwide, which is found in the Miller-Dieker chromosomal region, presenting a wide range of phenotypic manifestations. Usually, the duplicated area is de novo and varies in size from 1.8 to 4.0 Mbp. Critical genes for this region are PAFAH1B1 (#601545), YWHAE (#605066), and CRK (#164762). 17p13.3 microduplication syndrome can be categorized into two classes (Class I and Class II) based on the genes that are present in the duplicated area, which lead to different phenotypes. In this report, we present a new case of Class I 17p13.3 microduplication syndrome that presents with unilateral sensorineural hearing loss. Oligonucleotide and SNP array comparative genomic hybridization (a-CGH) analysis revealed a duplication of approximately 121 Kbp on chromosome 17p13.3, which includes YWHAE and CRK genes. Whole-exome sequencing (WES) analysis confirmed the duplication. Our patient has common clinical symptoms of Class I 17p13.3 microduplication syndrome, and in addition, she has unilateral sensorineural hearing loss. Interestingly, WES analysis did not detect any mutations in genes that are associated with hearing loss. The above findings lead us to propose that hearing loss is a manifestation of 17p13.3 duplication syndrome.


Asunto(s)
Trastornos de los Cromosomas , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Pérdida Auditiva Sensorineural , Pérdida Auditiva Unilateral , Femenino , Humanos , Pérdida Auditiva Unilateral/genética , Hibridación Genómica Comparativa , Duplicación Cromosómica/genética , Trastornos de los Cromosomas/genética , Deleción Cromosómica , Pérdida Auditiva Sensorineural/genética
7.
Genes (Basel) ; 14(7)2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37510409

RESUMEN

The 5q deletion syndrome is a relatively rare condition caused by the monoallelic interstitial deletion of the long arm of chromosome 5. Patients described in literature usually present variable dysmorphic features, behavioral disturbance, and intellectual disability (ID); moreover, the involvement of the APC gene (5q22.2) in the deletion predisposes them to tumoral syndromes (Familial Adenomatous Polyposis and Gardner syndrome). Although the development of gastrointestinal tract malignancies has been extensively described, the genetic causes underlying neurologic manifestations have never been investigated. In this study, we described a new patient with a 19.85 Mb interstitial deletion identified by array-CGH and compared the deletions and the phenotypes reported in other patients already described in the literature and the Decipher database. Overlapping deletions allowed us to highlight a common region in 5q22.1q23.1, identifying KCNN2 (5q22.3) as the most likely candidate gene contributing to the neurologic phenotype.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Deleción Cromosómica , Genes APC , Discapacidad Intelectual , Humanos , Aberraciones Cromosómicas , Discapacidad Intelectual/genética , Fenotipo , Proteína de la Poliposis Adenomatosa del Colon/genética
8.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511212

RESUMEN

The lack of effective screening and successful treatment contributes to high ovarian cancer mortality, making it the second most common cause of gynecologic cancer death. Development of chemoresistance in up to 75% of patients is the cause of a poor treatment response and reduced survival. Therefore, identifying potential and effective biomarkers for its diagnosis and prognosis is a strong critical need. Copy number alterations are frequent in cancer, and relevant for molecular tumor stratification and patients' prognoses. In this study, array-CGH analysis was performed in three cell lines and derived cancer stem cells (CSCs) to identify genes potentially predictive for ovarian cancer patients' prognoses. Bioinformatic analyses of genes involved in copy number gains revealed that AhRR and PPP1R3C expression negatively correlated with ovarian cancer patients' overall and progression-free survival. These results, together with a significant association between AhRR and PPP1R3C expression and ovarian cancer stemness markers, suggested their potential role in CSCs. Furthermore, AhRR and PPP1R3C's increased expression was maintained in some CSC subpopulations, reinforcing their potential role in ovarian cancer. In conclusion, we reported for the first time, to the best of our knowledge, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario/patología , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Variaciones en el Número de Copia de ADN/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Pronóstico
9.
Genes (Basel) ; 14(6)2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37372471

RESUMEN

Partial duplication of the short arm of chromosome 7 is a rare chromosome rearrangement. The phenotype spectrum associated with this rearrangement is extremely variable even if in the last decade the use of high-resolution microarray technology for the investigation of patients carrying this rearrangement allowed for the identification of the 7p22.1 sub-band causative of this phenotype and to recognize the corresponding 7p22.1 microduplication syndrome. We report two unrelated patients that carry a microduplication involving the 7.22.2 sub-band. Unlike 7p22.1 microduplication carriers, both patients only show a neurodevelopmental disorder without malformations. We better characterized the clinical pictures of these two patients providing insight into the clinical phenotype associated with the microduplication of the 7p22.2 sub-band and support for a possible role of this sub-band in the 7p22 microduplication syndrome.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Humanos , Duplicación Cromosómica , Trisomía , Anomalías Múltiples/genética , Discapacidad Intelectual/genética , Estructuras Cromosómicas
10.
J Med Case Rep ; 17(1): 250, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37296475

RESUMEN

BACKGROUND: The 18q- deletion syndrome is a rare congenital chromosomal disorder caused by a partial deletion of the long arm of chromosome 18. The diagnosis of a patient with this syndrome relies on the family medical history, physical examination, developmental assessment, and cytogenetic findings. However, the phenotype of patients with 18q- deletion syndrome can be highly variable, ranging from almost normal to severe malformations and intellectual disability, and normal cytogenetic findings are common, thus complicating the diagnosis. Interestingly, only few characteristic features of typical 18q- deletion syndrome were found in the patient, despite sharing the same critical region. To our knowledge, this is the first report of a Malaysian individual with 18q- terminal microdeletion diagnosed with microarray-based technology. CASE PRESENTATION: Here we report a 16-year-old Malaysian Chinese boy, a product of a non-consanguineous marriage, who presented with intellectual disability, facial dysmorphism, high arched palate, congenital talipes equinovarus (clubfoot), congenital scoliosis, congenital heart defect, and behavioral problems. A routine chromosome analysis on 20 metaphase cells showed a normal 46, XY G-banded karyotype. Array-based comparative genomic hybridization was performed using a commercially available 244 K 60-mer oligonucleotide microarray slide according to the manufacturer's protocol. This platform allows genome-wide survey and molecular profiling of genomic aberrations with an average resolution of about 10 kB. In addition, multiplex ligation-dependent probe amplification analysis was carried out using SALSA MLPA kit P320 Telomere-13 to confirm the array-based comparative genomic hybridization finding. Array-based comparative genomic hybridization analysis revealed a 7.3 MB terminal deletion involving chromosome band 18q22.3-qter. This finding was confirmed by multiplex ligation-dependent probe amplification, where a deletion of ten probes mapping to the 18q22.3-q23 region was detected, and further multiplex ligation-dependent probe amplification analysis on his parents showed the deletion to be de novo. CONCLUSION: The findings from this study expand the phenotypic spectrum of the 18q- deletion syndrome by presenting a variation of typical 18q- deletion syndrome features to the literature. In addition, this case report demonstrated the ability of the molecular karyotyping method, such as array-based comparative genomic hybridization, to assist in the diagnosis of cases with a highly variable phenotype and variable aberrations, such as 18q- deletion syndrome.


Asunto(s)
Trastornos de los Cromosomas , Discapacidad Intelectual , Humanos , Hibridación Genómica Comparativa , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Cromosomas Humanos Par 18/genética , Deleción Cromosómica , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética
11.
Genome Med ; 15(1): 39, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221613

RESUMEN

BACKGROUND: Array-CGH is the first-tier genetic test both in pre- and postnatal developmental disorders worldwide. Variants of uncertain significance (VUS) represent around 10~15% of reported copy number variants (CNVs). Even though VUS reanalysis has become usual in practice, no long-term study regarding CNV reinterpretation has been reported. METHODS: This retrospective study examined 1641 CGH arrays performed over 8 years (2010-2017) to demonstrate the contribution of periodically re-analyzing CNVs of uncertain significance. CNVs were classified using AnnotSV on the one hand and manually curated on the other hand. The classification was based on the 2020 American College of Medical Genetics (ACMG) criteria. RESULTS: Of the 1641 array-CGH analyzed, 259 (15.7%) showed at least one CNV initially reported as of uncertain significance. After reinterpretation, 106 of the 259 patients (40.9%) changed categories, and 12 of 259 (4.6%) had a VUS reclassified to likely pathogenic or pathogenic. Six were predisposing factors for neurodevelopmental disorder/autism spectrum disorder (ASD). CNV type (gain or loss) does not seem to impact the reclassification rate, unlike the length of the CNV: 75% of CNVs downgraded to benign or likely benign are less than 500 kb in size. CONCLUSIONS: This study's high rate of reinterpretation suggests that CNV interpretation has rapidly evolved since 2010, thanks to the continuous enrichment of available databases. The reinterpreted CNV explained the phenotype for ten patients, leading to optimal genetic counseling. These findings suggest that CNVs should be reinterpreted at least every 2 years.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Trastorno del Espectro Autista/genética , Trastornos del Neurodesarrollo/genética , Humanos
12.
Genes (Basel) ; 14(5)2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-37239476

RESUMEN

The implementation of array comparative genomic hybridisation (array-CGH) allows us to describe new microdeletion/microduplication syndromes which were previously not identified. 9q21.13 microdeletion syndrome is a genetic condition due to the loss of a critical genomic region of approximately 750kb and includes several genes, such as RORB and TRPM6. Here, we report a case of a 7-year-old boy affected by 9q21.13 microdeletion syndrome. He presents with global developmental delay, intellectual disability, autistic behaviour, seizures and facial dysmorphism. Moreover, he has severe myopia, which was previously reported in only another patient with 9q21.13 deletion, and brain anomalies which were never described before in 9q21.13 microdeletion syndrome. We also collect 17 patients from a literature search and 10 cases from DECIPHER database with a total number of 28 patients (including our case). In order to better investigate the four candidate genes RORB, TRPM6, PCSK5, and PRUNE2 for neurological phenotype, we make, for the first time, a classification in four groups of all the collected 28 patients. This classification is based both on the genomic position of the deletions included in the 9q21.3 locus deleted in our patient and on the different involvement of the four-candidate gene. In this way, we compare the clinical problems, the radiological findings, and the dysmorphic features of each group and of all the 28 patients in our article. Moreover, we perform the genotype-phenotype correlation of the 28 patients to better define the syndromic spectrum of 9q21.13 microdeletion syndrome. Finally, we propose a baseline ophthalmological and neurological monitoring of this syndrome.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Masculino , Niño , Discapacidades del Desarrollo/genética , Deleción Cromosómica , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Estudios de Asociación Genética
13.
Mol Syndromol ; 14(2): 109-122, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37064343

RESUMEN

Introduction: Patients carrying interstitial deletions of the long arm of chromosome 9 show similar features. These phenotypes are often characterized by developmental delay, intellectual disability, short stature, and dysmorphism. Previously reported deletions differ in size and location spanning from 9q21 to 9q34 and were mostly detected by conventional cytogenetic techniques. Methods: Based on clinical features suggesting primarily chromosomal diseases, aCGH analysis was indicated. We report on de novo overlapping interstitial 9q deletions in 3 unrelated individuals presenting neurodevelopmental disorder and multiple congenital anomalies. Results: An 8.03-Mb (90 genes), a 15.71-Mb (193 genes), and a 15.81-Mb (203 genes) deletion were identified in 9q affecting 9q22.33q33.3. The overlapping region was 1.50 Mb, including 2 dosage-sensitive genes, namely EPB41L4B (OMIM #610340) and SVEP1 (OMIM #611691). These genes are thought to be involved in cellular adhesion, migration, and motility. The non-overlapping regions contain 24 dosage-sensitive genes. Conclusion: Besides the frequently described symptoms (developmental delay, intellectual disability, skeletal abnormalities, short stature, and dysmorphic facial features) shared by the patients with interstitial deletions of chromosome 9q reported thus far, two of our patients showed distinct forms of epilepsy, which were successfully treated, and one had a bilateral cleft lip and palate. Possible candidate genes for epilepsy and cleft lip and palate are discussed.

14.
Eur J Paediatr Neurol ; 44: 25-27, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36990055

RESUMEN

DNA deletions involving 6q22.1 region result in developmental encephalopathy (DE), often associated with movement disorders and epilepsy. The phenotype is attributed to the loss of the NUS1 gene included in the deleted region. Here we report three patients with 6q22.1 deletions of variable length all showing developmental delay, and rhythmic cortical myoclonus. Two patients had generalized seizures beginning in infancy. Myoclonic jerks had polygraphic features consistent with a cortical origin, also supported by cortico-muscular coherence analysis displaying a significant peak around 20 Hz contralateral to activated segment. Deletions in 6q22.1 region, similarly to NUS1 loss-of-function mutations, give rise to DE and cortical myoclonus via a haploinsufficiency mechanism. A phenotype of progressive myoclonic epilepsy (PME) may also occur.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Mioclonía , Humanos , Mioclonía/genética , Electroencefalografía , Epilepsia/genética , Convulsiones , Epilepsias Mioclónicas/genética , Receptores de Superficie Celular
15.
Front Pediatr ; 11: 1133789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937954

RESUMEN

Background: Neurodevelopmental disorders are a group of conditions characterized by developmental delays leading to abnormal brain functions. The methods of diagnosis and treatment of these conditions are complicated, and their treatment involves a combination of various forms of therapy. In recent years, the development of high-resolution technologies has played an important role in revealing the microdeletions, microduplications, and single-nucleotide variants of the chromosomes and how they are linked to the development of neurodevelopmental disorders. The wide implementation and application of molecular methodologies have started to shed light on the functional importance of using the appropriate methods in detecting these genetic variations that are categorized as either pathogenic or benign. The study aimed to compare the diagnostic yield of comparative hybridization (CGH) and whole exome sequencing (WES) in neurodevelopmental disorders among children attending the King Abdullah Specialist Children Hospital, Riyadh, Saudi Arabia. Methods: A retrospective study was conducted between 2015 and 2018 on 105 patients diagnosed with neurodevelopmental disorders through array-based CGH (Array-CGH) and WES. Results: In a sample of 105 patients, 16% was the hit rate of copy number variations (CNVs). WES was requested for CNV-negative patients (n = 79), of which 30% was the hit rate of pathogenic or likely pathogenic single-nucleotide variants. There was a difference in the diagnostic yield between CGH (16%) and WES (30%). Conclusion: WES was a better approach than Array-CGH to detect various DNA mutations or variants. Our findings could guide clinicians, researchers, and testing laboratories select the most cost-effective and appropriate approach for diagnosing their patients.

16.
Mol Genet Genomic Med ; 11(4): e2130, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36691815

RESUMEN

BACKGROUND: The 3q29 microduplication syndrome is a rare genomic disorder characterized by an extremely variable neurodevelopmental phenotype usually involving a genomic region ranging from 1.6 to 1.76 Mb. A small microduplication of 448.8 Kb containing only two genes was recently described in a patient with a 3q29 microduplication that was proposed as the minimal critical region of overlap of this syndrome. METHODS: Molecular karyotyping (array-CGH) was performed on DNA extracted from peripheral blood samples using Agilent-California USA Human Genome CGH Microarray 4 × 180 K. The proband and his younger brother were further tested with a next generation sequencing (NGS) panel including genes implicated in autism spectrum disorder and in neurodevelopmental disorders. Quantitative real-time PCR was applied to verify the abnormal array-CGH findings. RESULTS: Here, we report on a family with two males with neurodevelopmental disorders and an unaffected sibling with a small 3q29 microduplication (432.8 Kb) inherited from an unaffected mother that involves only two genes: DGL1 and BDH1. The proband had an additional intragenic duplication inherited from the unaffected father. Further testing was negative for Fragile X syndrome and for genes implicated in autism spectrum disorder and in neurodevelopmental disorders. CONCLUSION: To the best of our knowledge, one of the family members here analyzed is the second reported case of a patient carrying a small 3q29 microduplication including only DGL1 and BDH1 genes and without any additional genetic aberration. The recognition of the clinical spectrum in patients with the critical region of overlap associated with the 3q29 duplication syndrome should prove valuable for predicting outcomes and providing more informed genetic counseling to patients with duplications in this region.


Asunto(s)
Trastorno del Espectro Autista , Trastornos de los Cromosomas , Masculino , Humanos , Trastorno del Espectro Autista/genética , Trastornos de los Cromosomas/genética , Duplicación Cromosómica
17.
Arch Gynecol Obstet ; 307(1): 285-292, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486155

RESUMEN

PURPOSE: To evaluate the performance of chromosomal microarray analysis (CMA) in fetuses with nuchal translucency (NT) > 95th percentile. Secondary objectives were to analyze these results according to NT thickness, below or above 3.5 mm, and those without associated anomalies. METHODS: This observational single-cohort study was conducted between 2015 and 2018 in fetuses with NT > 95th percentile. Following an invasive test, quantitative fluorescence-polymerase chain reaction (QF-PCR) was performed, and if normal, CMA was performed. Pathogenic copy number variants (CNVs), non-reported pathogenic CNV, pathogenic autosomal recessive variants and variants of unknown significance (VUS) were analysed. RESULTS: One-hundred and sixty-two fetuses with NT > 95th percentile, normal QF-PCR and CMA were included. Amongst 128 fetuses with NT between the 95th percentile and 3.5 mm, one (0.8%) had a pathogenic CNV, four (3.1%) had non-reported pathogenic CNV, one (0.8%) had pathogenic autosomal recessive variant and 13 (10.2%) had VUS. Amongst 34 fetuses with NT ≥ 3.5 mm, four (11.8%) had pathogenic CNV, one (2.9%) had non-reported pathogenic CNV, one (2.9%) had pathogenic autosomal recessive variant and four (11.8%) had VUS. Four in 162 (2.5%) fetuses had CNVs at the chromosome 16p13.11 region. Amongst 154 fetuses without structural abnormalities and normal QF-PCR, three (1.9%) had a pathogenic CNV, 5 (3.2%) had non-reported pathogenic CNV, one (0.6%) autosomal recessive pathogenic CNV and 16 (10.4%) had VUS. CONCLUSION: Pathogenic CNVs were found in 1% of fetuses with an NT thickness between the 95th percentile and 3.5 mm and in 12% of fetuses with NT ≥ 3.5 mm. CNVs were found at the 16p13.11 region in 2.5% of cases.


Asunto(s)
Aberraciones Cromosómicas , Medida de Translucencia Nucal , Embarazo , Femenino , Humanos , Medida de Translucencia Nucal/métodos , Diagnóstico Prenatal/métodos , Estudios de Cohortes , Feto/diagnóstico por imagen
18.
J Autism Dev Disord ; 53(2): 615-623, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33394245

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a strong genetic basis. We accurately assessed 209 ASD subjects, categorized in complex (47) and essential (162), and performed array comparative genomic hybridization to identify pathogenic and recurrent Copy Number Variants (CNVs). We found 117 CNVs in 75 patients, 11 classified as pathogenic. The complex ASD subjects have higher frequency of pathogenic CNVs with a diagnostic yield of 12.8%. Familiality, cognitive and verbal abilities, severity of autistic symptoms, neuroimaging and neurophysiological findings are not related to genetic data. This study identifies loci of interest for ASD and highlights the importance of a careful phenotypic characterization, as complex ASD is related to higher rate of pathogenic CNVs.


Asunto(s)
Trastorno del Espectro Autista , Trastornos Generalizados del Desarrollo Infantil , Humanos , Niño , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN/genética , Cognición
19.
Int J Gynaecol Obstet ; 161(3): 1040-1045, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36572018

RESUMEN

OBJECTIVE: To define the residual risk of morbidity-related outcome in fetuses with nuchal translucency (NT) of 3.5 mm or more after normal genetic testing and mid-trimester anomaly scan. METHODS: A total of 114 fetuses with isolated NT of 3.5 mm or more, normal karyotype, and array-based comparative genomic hybridization (array-CGH) were included and divided in three groups: NT 3.5-4.5 mm, NT 4.5-6 mm, and NT greater than 6 mm. RASopathy testing and ultrasound follow up were performed in all fetuses. We evaluated: (1) incidence of genetic disorders; (2) incidence of structural abnormalities; (3) pregnancy outcome; (4) long-term pediatric outcome before (point 1) and after (point 2) a normal RASopathy testing and mid-trimester anomaly scan. RESULTS: After normal karyotype and array-CGH the residual risk of morbidity-related outcome was 24.64% for NT 3.5-4.5 mm, 25% for NT 4.5-6 mm and 76.47% for NT more than 6 mm. After a normal RASopathy testing and mid-trimester anomaly scan the residual risks decreased to 7.14%, 8.69%, and 33.3% in the three groups, respectively. CONCLUSION: In fetuses with an NT of 3.5 mm or more and both normal karyotype and array-CGH, the rate of morbidity-related outcome depends on NT size. A normal RASopathy testing and mid-trimester ultrasound are reassuring but the residual risk of morbidity-related outcome is increased compared with the general population, particularly if NT is greater than 6 mm.


Asunto(s)
Medida de Translucencia Nucal , Resultado del Embarazo , Femenino , Embarazo , Humanos , Niño , Hibridación Genómica Comparativa , Primer Trimestre del Embarazo , Cariotipo , Genómica , Ultrasonografía Prenatal
20.
Cytogenet Genome Res ; 162(3): 132-139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35896065

RESUMEN

Interstitial 2q24.2q24.3 microdeletions are rare cytogenetic aberrations associated with heterogeneous clinical features depending on the size of the deletion. Here, we describe 2 patients with overlapping de novo 2q24.2q24.3 deletions, characterized by array-CGH. This is the smallest 2q24.2q24.3 region of overlap described in the literature encompassing only 9 genes (SLC4A10, DPP4, GCG, FAP, IFIH1, GCA, KCNH7, FIGN, GRB14). We focused our attention on SLC4A10, DPP4, and KCNH7, genes associated with neurological features. Our patients presented similar features: intellectual disability, developmental and language delay, hypotonia, joint laxity, and dysmorphic features. Only patient 2 showed profound deafness and also carried a heterozygous mutation of the GJB2 gene responsible for autosomal recessive deafness 1A (DFNB1A: OMIM 220290). Could the disruption of a gene present in the 2q24.2q24.3 deleted region be responsible for her profound hearing loss?


Asunto(s)
Sordera , Discapacidad Intelectual , Deleción Cromosómica , Sordera/genética , Dipeptidil Peptidasa 4/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Helicasa Inducida por Interferón IFIH1/genética , Hipotonía Muscular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...